$$
% create the definition symbol
\def\bydef{\stackrel{\Delta}{=}}
%\def\circconv{\otimes}
\def\circconv{\circledast}
\newcommand{\qed}{\mbox{ } \Box}
\newcommand{\infint}{\int_{-\infty}^{\infty}}
% z transform
\newcommand{\ztp}{ ~~ \mathop{\mathcal{Z}}\limits_{\longleftrightarrow} ~~ }
\newcommand{\iztp}{ ~~ \mathop{\mathcal{Z}^{-1}}\limits_{\longleftrightarrow} ~~ }
% fourier transform pair
\newcommand{\ftp}{ ~~ \mathop{\mathcal{F}}\limits_{\longleftrightarrow} ~~ }
\newcommand{\iftp}{ ~~ \mathop{\mathcal{F}^{-1}}\limits_{\longleftrightarrow} ~~ }
% laplace transform
\newcommand{\ltp}{ ~~ \mathop{\mathcal{L}}\limits_{\longleftrightarrow} ~~ }
\newcommand{\iltp}{ ~~ \mathop{\mathcal{L}^{-1}}\limits_{\longleftrightarrow} ~~ }
\newcommand{\ftrans}[1]{ \mathcal{F} \left\{#1\right\} }
\newcommand{\iftrans}[1]{ \mathcal{F}^{-1} \left\{#1\right\} }
\newcommand{\ztrans}[1]{ \mathcal{Z} \left\{#1\right\} }
\newcommand{\iztrans}[1]{ \mathcal{Z}^{-1} \left\{#1\right\} }
\newcommand{\ltrans}[1]{ \mathcal{L} \left\{#1\right\} }
\newcommand{\iltrans}[1]{ \mathcal{L}^{-1} \left\{#1\right\} }
% coordinate vector relative to a basis (linear algebra)
\newcommand{\cvrb}[2]{\left[ \vec{#1} \right]_{#2} }
% change of coordinate matrix (linear algebra)
\newcommand{\cocm}[2]{ \mathop{P}\limits_{#2 \leftarrow #1} }
% Transformed vector set
\newcommand{\tset}[3]{\{#1\lr{\vec{#2}_1}, #1\lr{\vec{#2}_2}, \dots, #1\lr{\vec{#2}_{#3}}\}}
% sum transformed vector set
\newcommand{\tsetcsum}[4]{{#1}_1#2(\vec{#3}_1) + {#1}_2#2(\vec{#3}_2) + \cdots + {#1}_{#4}#2(\vec{#3}_{#4})}
\newcommand{\tsetcsumall}[4]{#2\lr{{#1}_1\vec{#3}_1 + {#1}_2\vec{#3}_2 + \cdots + {#1}_{#4}\vec{#3}_{#4}}}
\newcommand{\cvecsum}[3]{{#1}_1\vec{#2}_1 + {#1}_2\vec{#2}_2 + \cdots + {#1}_{#3}\vec{#2}_{#3}}
% function def
\newcommand{\fndef}[3]{#1:#2 \to #3}
% vector set
\newcommand{\vset}[2]{\{\vec{#1}_1, \vec{#1}_2, \dots, \vec{#1}_{#2}\}}
% absolute value
\newcommand{\abs}[1]{\left| #1 \right|}
% vector norm
\newcommand{\norm}[1]{\left|\left| #1 \right|\right|}
% trans
\newcommand{\trans}{\mapsto}
% evaluate integral
\newcommand{\evalint}[3]{\left. #1 \right|_{#2}^{#3}}
% slist
\newcommand{\slist}[2]{{#1}_{1},{#1}_{2},\dots,{#1}_{#2}}
% vectors
\newcommand{\vc}[1]{\textbf{#1}}
% real
\newcommand{\Real}[1]{{\Re \mit{e}\left\{{#1}\right\}}}
% imaginary
\newcommand{\Imag}[1]{{\Im \mit{m}\left\{{#1}\right\}}}
\newcommand{\mcal}[1]{\mathcal{#1}}
\newcommand{\bb}[1]{\mathbb{#1}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\I}{\mathbb{I}}
\newcommand{\Th}[1]{\mathop\mathrm{Th(#1)}}
\newcommand{\intersect}{\cap}
\newcommand{\union}{\cup}
\newcommand{\intersectop}{\bigcap}
\newcommand{\unionop}{\bigcup}
\newcommand{\setdiff}{\backslash}
\newcommand{\iso}{\cong}
\newcommand{\aut}[1]{\mathop{\mathrm{Aut(#1)}}}
\newcommand{\inn}[1]{\mathop{\mathrm{Inn(#1)}}}
\newcommand{\Ann}[1]{\mathop{\mathrm{Ann(#1)}}}
\newcommand{\dom}[1]{\mathop{\mathrm{dom} #1}}
\newcommand{\cod}[1]{\mathop{\mathrm{cod} #1}}
\newcommand{\id}{\mathrm{id}}
\newcommand{\st}{\ |\ }
\newcommand{\mbf}[1]{\mathbf{#1}}
\newcommand{\enclose}[1]{\left\langle #1\right\rangle}
\newcommand{\lr}[1]{\left( #1\right)}
\newcommand{\lrsq}[1]{\left[ #1\right]}
\newcommand{\op}{\mathrm{op}}
\newcommand{\dotarr}{\dot{\rightarrow}}
%Category Names:
\newcommand{\Grp}{\mathbf{Grp}}
\newcommand{\Ab}{\mathbf{Ab}}
\newcommand{\Set}{\mathbf{Set}}
\newcommand{\Matr}{\mathbf{Matr}}
\newcommand{\IntDom}{\mathbf{IntDom}}
\newcommand{\Field}{\mathbf{Field}}
\newcommand{\Vect}{\mathbf{Vect}}
\newcommand{\thm}[1]{\begin{theorem} #1 \end{theorem}}
\newcommand{\clm}[1]{\begin{claim} #1 \end{claim}}
\newcommand{\cor}[1]{\begin{corollary} #1 \end{corollary}}
\newcommand{\ex}[1]{\begin{example} #1 \end{example}}
\newcommand{\prf}[1]{\begin{proof} #1 \end{proof}}
\newcommand{\prbm}[1]{\begin{problem} #1 \end{problem}}
\newcommand{\soln}[1]{\begin{solution} #1 \end{solution}}
\newcommand{\rmk}[1]{\begin{remark} #1 \end{remark}}
\newcommand{\defn}[1]{\begin{definition} #1 \end{definition}}
\newcommand{\ifff}{\LeftRightArrow}
<!-- For the set of reals and integers -->
\newcommand{\rr}{\R}
\newcommand{\reals}{\R}
\newcommand{\ii}{\Z}
\newcommand{\cc}{\C}
\newcommand{\nn}{\N}
\newcommand{\nats}{\N}
<!-- For terms being indexed.
Puts them in standard font face and creates an index entry.
arg: The term being defined.
\newcommand{\pointer}[1]{#1\index{#1}} -->
<!-- For bold terms to be index, but defined elsewhere
Puts them in bold face and creates an index entry.
arg: The term being defined. -->
\newcommand{\strong}[1]{\textbf{#1}}
<!-- For set names.
Puts them in italics. In math mode, yields decent spacing.
arg: The name of the set. -->
\newcommand{\set}[1]{\textit{#1}}
$$
mathapedia
- About
- 天行加速2022
- Paper
- Examples
- Sandbox
apk pure store官网
This project extends the great work of MathJax to enable real-time, dynamic authorship of mathematical ebooks.
apk pure store官网
Works on iPhone, iPad, Nexus Tablets, and Androids
apk pure store官网
Remember paper? Well, now you can have best of both worlds.
apk pure store官网
Real-time editor gives you instantaneous feedback with consistent PSTricks drawing capabilities